Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 15: 1378738, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38660442

RESUMO

Soil salinization poses a mounting global ecological and environmental threat. The identification of genes responsible for negative regulation of salt tolerance and their utilization in crop improvement through gene editing technologies emerges as a swift strategy for the effective utilization of saline-alkali lands. One efficient mechanism of plant salt tolerance is maintaining the proper intracellular K+/Na+ ratio. The Shaker K+ channels play a crucial role in potassium absorption, transport, and intracellular potassium homeostasis in plant cells. Here, the study presents the first genome-wide identification of Shaker K+ channels in Nicotiana tabacum L., along with a detailed bioinformatic analysis of the 20 identified members. Transcriptome analysis revealed a significant up-regulation of NtSKOR1B, an outwardly-rectifying member predominantly expressed in the root tissue of tobacco seedlings, in response to salt stress. This finding was then confirmed by GUS staining of ProNtSKOR1B::GUS transgenic lines and RT-qPCR analysis. Subsequently, NtSKOR1B knockout mutants (ntskor1) were then generated and subjected to salt conditions. It was found that ntskor1 mutants exhibit enhanced salt tolerance, characterized by increased biomass, higher K+ content and elevated K+/Na+ ratios in both leaf and root tissues, compared to wild-type plants. These results indicate that NtSKOR1B knockout inhibits K+ efflux in root and leaf tissues of tobacco seedlings under salt stress, thereby maintaining higher K+/Na+ ratios within the cells. Thus, our study identifies NtSKOR1B as a negative regulator of salt tolerance in tobacco seedlings.

2.
Front Plant Sci ; 14: 1152817, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37496856

RESUMO

Inherently, ammonium (NH4 +) is critical for plant growth; however, its toxicity suppresses potassium (K+) uptake and vice-versa. Hence, attaining a nutritional balance between these two ions (NH4 + and K+) becomes imperative for the growth of tobacco seedlings. Therefore, we conducted a 15-day experimental study on tobacco seedlings exposed to different concentrations (47 treatments) of NH4 +/K+ at different corresponding 12 ratios simultaneously in a hydroponic system. Our study aimed at establishing the optimal NH4 +-K+ concentration and the corresponding ratio required for optimal growth of different tobacco plant organs during the seedling stage. The controls were the baseline for comparison in this study. Plants with low or excessive NH4 +-K+ concentration had leaf chlorosis or dark greenish colouration, stunted whole plant part biomass, and thin roots. We found that adequate K+ supply is a pragmatic way to mitigate NH4 +-induced toxicity in tobacco plants. The optimal growth for tobacco leaf and root was attained at NH4 +-K+ concentrations 2-2 mM (ratio 1:1), whereas stem growth was optimal at NH4 +-K+ 1-2 mM (1:2). The study provided an insight into the right combination of NH4 +/K+ that could mitigate or prevent NH4 + or K+ stress in the tobacco seedlings.

3.
Plants (Basel) ; 11(23)2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36501338

RESUMO

Plants utilize carbohydrates as the main energy source, but much focus has been on the impact of N and K on plant growth. Less is known about the combined impact of NH4+ and K+ nutrition on photoassimilate distribution among plant organs, and the resultant effect of such distribution on growth of tobacco seedlings, hence this study. Here, we investigated the synergetic effect of NH4+ and K+ nutrition on photoassimilate distribution, and their resultant effect on growth of tobacco seedlings. Soluble sugar and starch content peaks under moderate NH4+ and moderate K+ (2-2 mM), leading to improved plant growth, as evidenced by the increase in tobacco weight and root activity. Whereas, a drastic reduction in the above indicators was observed in plants under high NH4+ and low K+ (20-0.2 mM), due to low carbohydrate synthesis and poor photoassimilate distribution. A strong positive linear relationship also exists between carbohydrate (soluble sugar and starch) and the activities of these enzymes but not for invertase. Our findings demonstrated that NH4+ and K+-induced ion imbalance influences plant growth and is critical for photoassimilate distribution among organs of tobacco seedlings.

4.
Front Plant Sci ; 12: 740976, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34603362

RESUMO

Many tobacco (Nicotiana tabacum) cultivars are salt-tolerant and thus are potential model plants to study the mechanisms of salt stress tolerance. The CALCINEURIN B-LIKE PROTEIN (CBL) is a vital family of plant calcium sensor proteins that can transmit Ca2+ signals triggered by environmental stimuli including salt stress. Therefore, assessing the potential of NtCBL for genetic improvement of salt stress is valuable. In our studies on NtCBL members, constitutive overexpression of NtCBL5A was found to cause salt supersensitivity with necrotic lesions on leaves. NtCBL5A-overexpressing (OE) leaves tended to curl and accumulated high levels of reactive oxygen species (ROS) under salt stress. The supersensitivity of NtCBL5A-OE leaves was specifically induced by Na+, but not by Cl-, osmotic stress, or drought stress. Ion content measurements indicated that NtCBL5A-OE leaves showed sensitivity to the Na+ accumulation levels that wild-type leaves could tolerate. Furthermore, transcriptome profiling showed that many immune response-related genes are significantly upregulated and photosynthetic machinery-related genes are significantly downregulated in salt-stressed NtCBL5A-OE leaves. In addition, the expression of several cation homeostasis-related genes was also affected in salt-stressed NtCBL5A-OE leaves. In conclusion, the constitutive overexpression of NtCBL5A interferes with the normal salt stress response of tobacco plants and leads to Na+-dependent leaf necrosis by enhancing the sensitivity of transgenic leaves to Na+. This Na+ sensitivity of NtCBL5A-OE leaves might result from the abnormal Na+ compartmentalization, plant photosynthesis, and plant immune response triggered by the constitutive overexpression of NtCBL5A. Identifying genes and pathways involved in this unusual salt stress response can provide new insights into the salt stress response of tobacco plants.

5.
Plants (Basel) ; 10(2)2021 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-33567573

RESUMO

CBL-interacting protein kinase (CIPK) family is a unique group of serine/threonine protein kinase family identified in plants. Among this family, AtCIPK23 and its homologs in some plants are taken as a notable group for their importance in ions transport and stress responses. However, there are limited reports on their roles in seedling growth and development, especially in Solanaceae plants. In this study, NtCIPK23, a homolog of AtCIPK23 was cloned from Nicotiana tabacum. Expression analysis showed that NtCIPK23 is mainly expressed in the radicle, hypocotyl, and cotyledons of young tobacco seedlings. The transcriptional level of NtCIPK23 changes rapidly and spatiotemporally during seed germination and early seedling growth. To study the biological function of NtCIPK23 at these stages, the overexpressing and CRISPR/Cas9-mediated knock-out (ntcipk23) tobacco lines were generated. Phenotype analysis indicated that knock-out of NtCIPK23 significantly delays seed germination and the appearance of green cotyledon of young tobacco seedling. Overexpression of NtCIPK23 promotes cotyledon expansion and hypocotyl elongation of young tobacco seedlings. The expression of NtCIPK23 in hypocotyl is strongly upregulated by darkness and inhibited under light, suggesting that a regulatory mechanism of light might underlie. Consistently, a more obvious difference in hypocotyl length among different tobacco materials was observed in the dark, compared to that under the light, indicating that the upregulation of NtCIPK23 contributes greatly to the hypocotyl elongation. Taken together, NtCIPK23 not only enhances tobacco seed germination, but also accelerate early seedling growth by promoting cotyledon greening rate, cotyledon expansion and hypocotyl elongation of young tobacco seedlings.

6.
BMC Biotechnol ; 19(1): 45, 2019 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-31299949

RESUMO

BACKGROUND: Tobacco stalk (TS), a major agricultural waste abundant in pectin, has resulted in concerns about the need for its reuse. The nicotine in TS is considered a chemical that is to\xic and hazardous to the environment. RESULTS: In this study, Bacillus tequilensis CAS-MEI-2-33 was isolated from cigar wrappers to produce alkaline pectinase using TS. Subsequently, the medium and fermentation conditions for the production of pectinase by B. tequilensis CAS-MEI-2-33 were optimized. The optimal fermentation period, pH of the initial fermentation medium, concentration of TS, and inoculum amount for B. tequilensis CAS-MEI-2-33 were 40 h, 40 g/L, 7.0, and 3%, respectively. Under optimal conditions, the pectinase activity was 1370 U/mL. Then, the enzymatic properties, such as the optimum pH, reaction temperature, temperature stability, and effects of metal ions, were studied. The optimal pH was determined to be 10.0, indicating that the enzyme was an alkaline pectinase. The optimal temperature was 40 °C, and pectinase activity was stable at 40 °C. The Ag+ metal ions were shown to remarkably promote enzyme activity. The pectinase was partly purified by ammonium sulfate precipitation, ion exchange chromatography, and Sephacryl S-100 chromatography. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and LC-MS/MS analyses were utilized to analyze the pectinase. CONCLUSIONS: This study provided a new alkaline pectinase candidate and a new strategy for the use of TS.


Assuntos
Bacillus/enzimologia , Proteínas de Bactérias/metabolismo , Nicotiana/química , Pectinas/metabolismo , Poligalacturonase/metabolismo , Bacillus/classificação , Bacillus/genética , Estabilidade Enzimática , Fermentação , Concentração de Íons de Hidrogênio , Microbiologia Industrial/métodos , Filogenia , Temperatura , Nicotiana/metabolismo , Produtos do Tabaco/microbiologia
7.
Virus Genes ; 55(2): 253-256, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30697673

RESUMO

Brassica yellows virus (BrYV), prevalently distributed throughout mainland China and South Korea while triggering serious diseases in cruciferous crops, is proposed to be a new species in the genus Polerovirus within the family Luteoviridae. There are three distinct genotypes (BrYV-A, BrYV-B and BrYV-C) reported in cabbage and radish. Here, we describe a new BrYV isolate infecting tobacco plants in the field, which was named BrYV-NtabQJ. The complete genome sequence of BrYV-NtabQJ is 5741 nt in length, and 89% of the sequence shares higher sequence identities (about 90%) with different BrYV isolates. However, it possesses a quite divergent region within ORF5, which is more close to Beet western yellows virus (BWYV), Beet mild yellowing virus (BMYV) and Beet chlorosis virus (BChV). A significant recombination event was then detected among BrYV-NtabQJ, BrYV-B Beijng isolate (BrYV-BBJ) and BWYV Leonurus sibiricus isolate (BWYV-LS). It is proposed that BrYV-NtabQJ might be an interspecific recombinant between BrYV-BBJ and BWYV-LS, and the recombination might result in the successful aphid transmission of BrYV from cruciferous crops to tobacco. And it also poses new challenges for BrYV diagnosis and the vegetable production.


Assuntos
Luteoviridae/genética , Nicotiana/virologia , Filogenia , Doenças das Plantas/virologia , Brassica/virologia , Transferência Genética Horizontal/genética , Genoma Viral , Genótipo , Especificidade de Hospedeiro/genética , Luteoviridae/patogenicidade , Luteovirus/genética , Fases de Leitura Aberta , Raphanus/virologia , Nicotiana/genética
8.
AMB Express ; 8(1): 182, 2018 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-30415449

RESUMO

Selection of optimal primer pairs in 16S rRNA gene sequencing is a pivotal issue in microorganism diversity analysis. However, limited effort has been put into investigation of specific primer sets for analysis of the bacterial diversity of aging flue-cured tobaccos (AFTs), as well as prediction of the function of the bacterial community. In this study, the performance of four primer pairs in determining bacterial community structure based on 16S rRNA gene sequences in AFTs was assessed, and the functions of genes were predicted using Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt). Results revealed that the primer set 799F-1193R covering the amplification region V5V6V7 gave a more accurate picture of the bacterial community structure of AFTs, with lower co-amplification levels of chloroplast and mitochondrial genes, and more genera covered than when using the other primers. In addition, functional gene prediction suggested that the microbiome of AFTs was involved in kinds of interested pathways. A high abundance of functional genes involved in nitrogen metabolism was detected in AFTs, reflecting a high level of bacteria involved in degrading harmful nitrogen compounds and generating nitrogenous nutrients for others. Additionally, the functional genes involved in biosynthesis of valuable metabolites and degradation of toxic compounds provided information that the AFTs possess a huge library of microorganisms and genes that could be applied to further studies. All of these findings provide a significance reference for researchers working on the bacterial diversity assessment of tobacco-related samples.

9.
BMC Biotechnol ; 16(1): 81, 2016 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-27871279

RESUMO

BACKGROUND: Tobacco stalk is one kind of abundant crop residues in China. The high lignification of tobacco stalk increases its reusing cost and the existing of nicotine will cause serious pollution. The biodegradation of lignocellulosic biomass has been demonstrated to be an environmental and economical approach for the utilization of plant stalk. Meanwhile, many nicotine-degrading microorganisms were found in nature. However, microorganisms which could degraded both nicotine and lignin haven't been reported. Therefore, it's imperative to find some suitable microorganisms to break down lignin and simultaneously remove nicotine in tobacco stalk. RESULTS: The nicotine in tobacco stalk could be degraded effectively by Trametes versicolor, Trametes hirsute and Phanerochaete chrysosporium. The nicotine content in tobacco stalk was lowered to below 500 mg/kg (a safe concentration to environment) after 10 days of fermentation with Phanerochaete chrysosporium and Trametes versicolor, and 15 days with Trametes hirsute. The degradation rate of lignin in the fermented tobacco stalk was 37.70, 51.56 and 53.75% with Trametes versicolor, Trametes hirsute and Phanerochaete chrysosporium, respectively. Meanwhile, 24.28% hemicellulose was degraded by Phanerochaete chrysosporium and 28.19% cellulose was removed by Trametes hirsute. Through the enzyme activity analysis, the main and highest ligninolytic enzymes produced by Phanerochaete chrysosporium, Trametes hirsute and Trametes versicolor were lignin peroxidase (88.62 U · L-1), manganese peroxidase (100.95 U · L-1) and laccase (745.65 U · L-1). Meanwhile, relatively high and stable cellulase activity was also detected during the fermentation with Phanerochaete chrysosporium, and the highest endoglucanase, exoglucanase and filter paper enzyme activities were 0.38 U · mL-1, 0.45 U · mL-1 and 0.35U · mL-1, respectively. Moreover, the products in the fermentation of tobacco stalk with P. chrysosporium were identified with GC-MS, besides the chemicals produced in the degradation of lignin and nicotine, some small molecular valuable chemicals and fatty acid were also detected. CONCLUSIONS: Our study developed a new method for the degradation and detoxification of tobacco stalk by fermentation with white rot fungi Phanerochaete chrysosporium and Trametes hirsute. The different oxidative enzymes and chemical products detected during the degradation indicated a possible pathway for the utilization of tobacco stalk.


Assuntos
Lignina/metabolismo , Nicotiana/microbiologia , Nicotina/metabolismo , Phanerochaete/metabolismo , Caules de Planta/química , Caules de Planta/microbiologia , Biodegradação Ambiental , Poluentes Ambientais/isolamento & purificação , Poluentes Ambientais/metabolismo , Nicotina/química , Nicotina/isolamento & purificação , Nicotiana/química
10.
Plant Cell Rep ; 34(12): 2053-63, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26318216

RESUMO

KEY MESSAGE: Nicotiana sylvestris calcineurin B-like protein NsylCBL10 improves tolerance to high-salt stress through better maintenance of Na (+) balance. The calcineurin B-like (CBL) proteins represent a unique group of plant calcium sensors and play an important role in regulating the response of a plant cell to the stress. Although many studies have been made in Arabidopsis (Arabidopsis thaliana), rice (Oryza sativa) and poplar (Populus trichocarpa), the characterization and elucidation of the functions of CBLs in tobacco have not yet been reported. In this study, NsylCBL10, a CBL gene showing higher similarities to other CBL10 genes, was cloned from Nicotiana sylvestris. NsylCBL10 is expressed in most of the tobacco tissues, and the protein targets to the plasma membrane specifically. Over-expression of NsylCBL10 enhanced the salt tolerance of Arabidopsis wild type plants greatly, and rescued the high-salt-sensitive phenotype of Arabidopsis cbl10 mutant. The analysis of ion content indicated that over-expressing NsylCBL10 in plants is able to maintain a lower Na(+)/K(+) ratio in roots and higher Na(+)/K(+) ratio in shoots, compared with cbl10 mutant. The results suggest that NsylCBL10 might play an important role in response to high salinity stress in N. sylvestris, by keeping a better ionic homeostasis to reduce the damage of toxic ion to the plant cell.


Assuntos
Arabidopsis/fisiologia , Nicotiana/genética , Proteínas de Plantas/metabolismo , Sequência de Aminoácidos , Arabidopsis/citologia , Arabidopsis/genética , Calcineurina/genética , Calcineurina/metabolismo , Biologia Computacional , Expressão Gênica , Genes Reporter , Homeostase , Dados de Sequência Molecular , Mutação , Proteínas de Plantas/genética , Raízes de Plantas/genética , Raízes de Plantas/fisiologia , Brotos de Planta/genética , Brotos de Planta/fisiologia , Plantas Geneticamente Modificadas , Tolerância ao Sal , Alinhamento de Sequência , Cloreto de Sódio/metabolismo , Nicotiana/citologia , Nicotiana/fisiologia
11.
Wei Sheng Wu Xue Bao ; 55(12): 1543-50, 2015 Dec 04.
Artigo em Chinês | MEDLINE | ID: mdl-27101696

RESUMO

OBJECTIVE: The aim of this study was to screen tobacco straw and nicotine degrading microorganism. METHODS: The bacterium was isolated from tobacco field soil using medium containing tobacco straw as the sole carbon and nitrogen source. We identified the bacterium through morphological and physiological characterization combined with the result of 16S rRNA gene sequence and data analysis. We also studied the lignocelluloses degradation and enzyme activities related to the degradation of lignin and cellulose in liquid state fermentation of tobacco stalk. RESULTS: The bacterium was identified as Bacillus megaterium and we had demonstrated that it has a good ability to degrade lignin in tobacco straw when fermented in liquid state. It showed the highest laccase production of 418. 52 U/L while the highest lignin peroxides and manganese peroxides activity was 19. 71 U/L and 64. 71 U/L. On the other hand, we also found that nicotine in tobacco stem was totally degraded 20 d after inoculation. CONCLUSION: to the isolated Bacillus megaterium is capable of degrading tobacco straw partially and nicotine totally.


Assuntos
Bacillus megaterium/enzimologia , Proteínas de Bactérias/metabolismo , Nicotiana/microbiologia , Nicotina/metabolismo , Caules de Planta/microbiologia , Microbiologia do Solo , Bacillus megaterium/classificação , Bacillus megaterium/genética , Bacillus megaterium/isolamento & purificação , Proteínas de Bactérias/genética , Celulose/metabolismo , Lignina/metabolismo , Dados de Sequência Molecular , Filogenia , Caules de Planta/metabolismo , Nicotiana/metabolismo
12.
Ying Yong Sheng Tai Xue Bao ; 24(10): 2961-9, 2013 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-24483094

RESUMO

An agar plate antagonism experiment in combining with in vivo screening experiment was conducted to study the affinity and bacteriostasis spectrum of the combination of biocontrol agents Trichoderma longbrachitum and Streptomyces jingyangensis to Nicotiana tabacum seedlings, with the effects of each agent and their combination on the N. tabacum seedlings growth, induced resistance, and resistance to Phytophthora nicotianae analyzed. The two agents had no interactive inhibitory effect and showed higher affinity to N. tabacum, and the agents themselves as well as their metabolites had higher bacteriostasis activities and wider bacteriostasis spectrum to P. nicotiaonae, Pythium aphanidermatum, and Alternaria alternate in different habitats. The combination of the two agents affected the morphological characteristics of the seedlings underground and aboveground parts, promoted the growth of root, stem, and leaf, and increased the root volume, total surface area, length, and average diameter as well as the stem height and size and the leaf length, width, and biomass, with these promotion effects being superior than those of the single-agent treatment. The combination of the two agents also increased the activities of the defensive enzymes superoxide dismutase, catalase, phenylalanine ammonia lyase, and peroxidase in the seedlings root significantly, with the relative control efficiency against P. nicotianae reached 69.3%, as compared to the conventional treatment. This study showed that the combination of T. longbrachitum and S. jingyangensis was a compatible combination with higher affinity and efficiency. This combination showed a synergistic effect of the two agents in plant disease control and in promoting plant growth, being able to promote the tobacco seedlings growth and control the P. nicotianae effectively.


Assuntos
Nicotiana/crescimento & desenvolvimento , Controle Biológico de Vetores/métodos , Plântula , Streptomyces/fisiologia , Trichoderma/fisiologia , Doenças das Plantas/prevenção & controle , Plântula/crescimento & desenvolvimento , Plântula/microbiologia , Nicotiana/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA